The Emergence of Science and Technology Indicators:
Why Did Governments Supplement Statistics With Indicators?

Benoît Godin
3465, rue Durocher
Montréal (QUE)
Canada H2X 2C6

Project on the History and Sociology of S&T Statistics
Paper No. 8
2001
Previous papers in the series:

2. B. Godin, *The Measure of Science and the Construction of a Statistical Territory: The Case of the National Capital Region (NCR)*.
The US government was one of the first to get involved in the measurement of science and technology. 1 After preliminary experiments in the thirties and forties, the National Science Foundation (NSF) took the lead in the early fifties. When, in 1962, the Organization for Economic and Co-operation Development (OECD) decided to produce a methodological manual on research and development (R&D) statistics, it duplicated NSF’s concepts and definitions. It was thus mainly NSF that inspired the Frascati Manual (1963). 2

Beyond the survey on R&D, the NSF innovated again twenty years later. In 1973, it published *Science Indicators* (hereafter *SI*), the “first effort to develop indicators of the state of the science enterprise in the United States”: 3

The ultimate goal of this report is a set of indices which would reveal the strengths and weaknesses of US science and technology, in terms of the capacity and performance of the enterprise in contributing to national objectives.

The publication had a large impact. Indeed, *SI* was, according to a recent National Science Board (NSB) publication, the organization’s bestseller. 4 It was widely acclaimed, discussed worldwide and served as a model for several countries and organizations: in 1984, the OECD started a series entitled *Science and Technology Indicators*, which in 1998 was replaced by *Main Science and Technology Indicators*. Eurostat followed in 1994 with its *European Report on Science and Technology Indicators*. France also started its own series *Science et Technologie: Indicateurs* in 1992, and Latin American countries followed suit in 1996 (*Principales Indicadores de Ciencia y Tecnologia*).

It is generally forgotten, however, that science and technology indicators did not originate in the United States but were first imagined at the OECD. Certainly, the NSF considerably influenced the methodology of data collection on science and technology in OECD countries in the early sixties, but it was OECD itself that inspired SI. Indeed, the debate of the 1960s on gaps between the United States and Europe gave the OECD the opportunity to develop the first worldwide indicators on science and technology. These indicators, among others, were later included in SI and gave the NSF the idea to develop indicators to assess the state of science and technology in the United States.

The present paper is a brief history on the origins of science and technology indicators (1965-1978). Where does the idea of indicators come from? How has it evolved over time? What did it mean for governments? The first part defines and clarifies the notions of statistic and indicator in order to distinguish them. The second traces the main factors that lead to SI and the third discusses the impact it had, particularly on OECD. The fourth relates SI to previous OECD reflections in order to show that the data produced during the debate on “Technological Gaps” in 1968 served as a model for the NSF.

Indicators as Policy Tools

Statistics are mathematical tools for the treatment of numerical data. Prior to Quetelet’s work (1796-1874), statistics was the compilation of numerical information. It was “untouched by the application of mathematical tools (aside from simple rules for computing rates and averages)” After Quetelet, more sophisticated statistics (based on measures of variation) began to replace averages, at least in the works of mathematicians and statisticians.

5 See note 1.
Most government statistics are of the first kind. They are totals calculated for a number of
dimensions and published as such. These statistics are simple numbers produced by
additions, not by complex mathematical tools (such as regressions and correlations). They
refer not to the methodology for the treatment of data but to the data themselves. 9 Science
and technology statistics follow the same pattern.

This is not to say that government statistics have not evolved since Quetelet’s time. Indeed,
it was governments together with social scientists who invented the notion of indicators.
Indicators began to appear in economics in the 1930s: growth, productivity, employment
and inflation. 10 The first social indicators were developed during the same period, 11 but
the term itself became widespread only in the 1960s. 12

The “movement” for social indicators considerably influenced the development of similar
statistics in science and technology. Indeed, early editions of SI benefited from regular
exchanges with the Social Science Research Council’s (SSRC) Committee on Social
Indicators. 13 Among other things, SSRC organized two conferences, one in 1974 14 and
another in 1976, 15 sponsored by the NSF, and devoted to improving the quality of science
indicators, and to better defining output indicators.

How did people distinguish an indicator from a regular statistic? A glance at definitions
should help answer this question. In 1969, US President L. Johnson asked the Department

10 President’s Research Committee on Social Trends (1933), Recent Social Trends in the Unites States, New
12 USGPO (1976), Measuring and Evaluating the Results of Federally Supported R&D: Science Output
Indicators, Hearings Before the Committee of Congress on Science and Technology, Washington, pp. 33, 41-42.
13 Y. Elkana et al. (1978), Towards a Metric of Science: The Advent of Science Indicators, New York: John
Wiley.
14 Scientometrics (1980), vol. 2 (nos. 56), Special Issue on the 1976 Symposium organized by the SSRC’s
Center for Coordination of Research on Social Indicators.
of Health, Education and Welfare to develop the necessary social statistics and indicators to chart social progress. The report, issued in 1970, defined an indicator as “a statistics of direct normative interest which facilitates concise, comprehensive and balanced judgments about the condition of major aspects of a society. It is in all cases a direct measure of welfare and is subject to the interpretation that, if it changes in the “right” direction, while other things remain equal, things have gotten better, or people better off”. 16 Similarly, R. Parke, then director of the Center for Coordination of Research on Social Indicators of the SSRC, defined indicators as “statistical time series that measure changes in significant aspects of society”. 17 Elsewhere, he specified: 18

To comprehend what the main features of the society are, how they interrelate, and how these features and their relationships change is, in our view, the chief purpose of work on social indicators.

An important element of these definitions is that of warning about changes. A social indicator measures dimensions of a phenomenon in order to follow the state of society. A second feature of indicators is that they are statistics that must be recurrent, otherwise they would not meet the above requirement – measuring change. Thirdly, indicators usually appear as a collection of statistics: a lone statistic can rarely be a reliable indicator. Finally an indicator rest on a model: “an indicator is properly reserved for a measure that explicitly tests some assumption, hypothesis, or theory; for mere data, these underlying assumptions, hypotheses, or theories usually remain implicit”. 19 Price formulated the same requirement the following way: “To be meaningful, a statistic must be somehow anticipatable from its internal structure or its relation to other data (…). It means the establishment of a set of relatively simple and fundamental laws”. 20

17 R. Parke’s speech before the Committee on Science and Technology, House of Representatives. See: USGPO (1976), op. cit., p. 48.
All these features are present in the OECD’s 1976 definition, according to which an indicator is “a series of data which measures and reflects the science and technology endeavour of a country, demonstrates its strengths and weaknesses and follows its changing character notably with the aim of providing early warning of events and trends which might impair its capability to meet the country’s needs”. 21 Similarly, the National Science Board (NSB) of the NSF suggested that: “indicators are intended to measure and to reflect US science, to demonstrate its strengths and weaknesses and to follow its changing character. Indicators such as these, updated regularly, can provide early warnings of events and trends which might impair the capability of science – and its related technology – to meet the needs of the Nations”. 22

Indicators Under Pressure

US Congress passed the law creating the NSF in 1950. Under this law, the NSF was charged with funding basic research, but was also given, under the influence of the Bureau of Budget, 23 a role in policy advice and in the evaluation of research. The NSF was asked to “maintain a current register of scientific and technical personnel, and in other ways provide a central clearinghouse for the collection, interpretation, and analysis of data on scientific and technical resources in the United States”. 24 In 1968, Congress explicitly mandated the NSF to report on the status and health of science and technology. 25

During the first years of its existence, the NSF mainly understood its role in evaluation as one of collecting and disseminating statistical information (and issuing statements concerning conditions that are desirable for the advancement of science). 26 As early as 1953, with its first survey on R&D, the NSF stated: 27

21 OECD (1976), Science and Technology Indicators, DSTI/SPR/76.43, p. 6.
24 Public Law 507 (1950) and Executive Order 10521 (1954).
“No attempt has been made in this report to present any conclusions as to general policies (...). However, factual information of the kind developed by the study does provide an initial basis for policy (...).”

Rapidly, people outside the NSF became uncomfortable with such an understanding of its mandate. Too few policy analyses and assessments were said to accompany the numbers. A.T. Waterman, the first director of the NSF, always defended the organization against these criticisms. His main argument was that “it (was) unrealistic to expect one federal agency to render judgment on the over-all performance of another agency or department”.

Nevertheless, SI was the result of these criticisms, as well as being the response to new and explicit instructions from the government. In September 1970, President R. Nixon asked the Office of Science and Technology (OST) and the President’s Science Advisory Committee (PSAC) to “submit each May a report on the status and health of science and technology”. The request was, in fact, a reminder to the Board that it had not fully met its obligations (indeed, Congress will make a similar request again in 1976). The NSB met with the two organizations and reconsidered the nature of its annual report. It studied two options. One was to issue an occasional white paper on policy, which was to be independent of the annual reports. The other was to produce an annual report that “would provide baseline data for each year with a series of chapters providing an assessment of the health of science”. The latter option prevailed.

In February 1971, the NSB began discussions on the possibility of a SI report and approved the “systematic development of data and information on the health of science

29 USGPO (1983), The National Science Board: Science Policy and Management for the National Science Foundation, Hearings before the Committee on Science and Technology, Washington, p. 183.
31 National Science Board, Minutes of the 133rd Session, 19-20 November 1970.
33 National Science Board, Minutes of the 136th Session, 18-19 February 1971.
indicators and the preparation of an annual report based thereon”. 34 To that end, an ad hoc committee on science indicators was formed, chaired by Roger W. Heyns, member of the Board, chancellor of the University of California at Berkeley and president of the American Council on Education. 35 The committee first conceived a long list of 57 possible measures, divided into seven categories, 36 and then rated the indicators on a scale of importance and feasibility (see Annex). 37 By January 1972, the work was so advanced that the Board decided that its 5th annual report and subsequent ones would be based on science indicators. 38 The Board reviewed the proposed indicators in March 39 and a first draft of the report was circulated for comments in September. 40 The final report was approved in November and, as requested by law, transmitted for review to the Office of Science and Technology (OST), the Office of Management and Budget (OMB) and other agencies. 41 In September 1973, SI was officially sent to Congress. 42

One month later, the Board estimated that approximately 11 000 copies had been distributed so far and was pleased with the favorable press coverage. 43 The recognition of the reputed quality of SI would be confirmed again in 1982 when Congress amended the law of NSF and asked, among other things, for a biennial report on science indicators. 44

According to C. Falk, the main person behind SI, the document was a success because of five characteristics. 45 Firstly, it collected dispersed statistics all in only one book. Secondly, it discussed science mainly by way of charts rather than numbers. Tables
appeared primarily in the appendix. Thirdly, it included brief highlights for policy makers. Fourthly, there was small (as well as non-controversial, I would add) analysis. As we have seen, this was the NSF’s philosophy. Indeed, NSF personnel confessed to the General Accounting Office (GAO) that: “the reports were meant to emphasize quantitative data and not venture at all into evaluations or assessment”. Finally, each edition always contained something new in terms of information and indicators.

SI was planned and considered by the NSB to respond directly to the mandate Congress gave it from the start, that is to provide a regular assessment of science in the country. In 1976 for example, Heyns highlighted the six purposes and functions SI was intended to serve:

- To detect and monitor significant developments and trends in the scientific enterprise, including international comparisons;
- To evaluate their implications for the present and future health of science.
- To provide continuing and comprehensive appraisal of US science.
- To establish a new mechanism for guiding the Nation’s science policy.
- To encourage quantifications of the common dimensions of science policy, leading to improvements in R&D policy setting within Federal agencies and other organizations.
- To stimulate social scientists’ interest in the methodology of science indicators as well as their interest in this important area of public policy.

46 And still is today: at the end of the 1990s, the president of the NSB claimed, again, that the Board should discuss policy matters more directly. See: Science (1997), US NSB Seeks a Wider Role in Policy Making, 386, p. 428; Science (1997), Science Board Wants Bigger Policy Role, 275, p. 1407.
47 GAO (1979), op. cit., p. 55. See also: S. Cozzens, Science Indicators: Description or Prescription?, Office of Technology Assessment, Washington.
48 USGPO (1976), op. cit., p. 7.
49 USGPO (1976), op. cit., p. 10.
Not all people agreed, however, with such a positive view of \textit{SI}. Government officials as well as academics critically discussed the document at length in several forums.50 The main criticisms centered on the following:

- The “operationalism” of \textit{SI} (as GAO called it), that is the tendency to use data because it’s there rather than develop an explicit model of science and technology that would underlie the measurement. During the 1976 hearings on \textit{SI} in Congress, R. Ayres, Vice-President, International Research and Technology, summarized this view in the following terms: “(...) the number of Nobel prizes is easy to count and that is why you are collecting them, not because it means anything”.51 Indeed, Heyns himself admitted, during the hearings before Congress, that: “the priority emphasis on input indicators was predicted on the general availability of a number of accepted conventional measures”.52 This was one of the central criticisms of GAO: “At the time these measures were selected, most of the data already existed in hand for NSB (...) particularly in NSF’s Division of Science Resources Studies”.53 “It was natural that the initial SI reports would be based largely on an operational approach, deriving indicators from the readily available data on the basis of suspected importance. This approach, however, incorporated a limited view of science and technology, and led to the construction of a number of indicators whose underlying assumptions are tenuous or invalid”.54 S. Cozzens attributed this tendency to pressures of having to add new indicators in each edition.55

- The input/output model, where links between inputs and outputs are badly demonstrated: \textit{SI} “lacks any overall unifying model that makes sense of the

51 USGPO (1976), \textit{op. cit.}, p. 72.
52 USGPO (1976), \textit{op. cit.}, p. 10.
53 GAO (1979), \textit{op. cit.}, p 19.
54 \textit{Ibid}, pp. 50-51.
55 Cozzens (1991), \textit{op. cit.}, p. 5.
connections between science, technology, economy and society”. 56 It is “too constricted by an input-output model framework. In this approach, science and technology are seen as resources which go into, and tangible results which come out of, a black box”. 57

- The emphasis on inputs (expenditures and personnel 58) to the detriment of outputs and impacts, as a consequence of an implicit model of science as autonomous. 59 “The more inputs, the healthier the system”. 60

- The implicit assumptions and objectives inspired by the 1945 rationale to justify the Federal funding of science. 61

- The relative absence of analysis of long-term trends and the politically neutral discourse: “It is the Board policy that the data should speak for themselves”. 62 “While SEI is an excellent statistical reference tool, its politically neutral text keeps it out of the business of assessment, and its encyclopedic size and organization transmit segmented information rather than a synthetic overview”. 63

- The NSF view of the world: “Matters of interest to NSF get high priority for inclusion, and matter of interest to other agencies get lower priorities”. 64 This is manifested by “extensive treatment of academic research, a bit of information on industrial basic research, and a smattering of input data on government research”. 65

- The highly aggregated level of data: there was a “tendency throughout most of SI-72 and SI-74 to opt for bulk measures (…), even when more details spectroscopy of data was available in the literature”. 66

- The absence of details on methodology: “A widespread problem in the analysis of data is lack of attention to how the data were generated, to their limitations, and in

57 GAO (1979), op. cit., p. 19.
58 Ibid, p. 9; GAO (1979), op. cit., p. 25.
59 Elkana et al., op. cit., pp. 5-6.
60 Cozzens (1991), op. cit., p 11.
63 Cozzens, op. cit., p. iv.
64 Cozzens (1991), op. cit., p. 10.
65 Cozzens (1991), op. cit., p. 11.
The Emergence of S&T Indicators: Why Did Governments Supplement Statistics With Indicators?

Over the years, SI (SEI since 1987) has grown considerably in content. While SI contained 93 pages and 112 tables in the 1972 edition, these numbers respectively increased to 177 and 258 in 1989. With the 2000 edition, SEI published two volumes for the first time. Over the same period, the indicators also grew in number and covered more and more dimensions of science and technology: resources, workforce, economic performance, impacts and assessments, enrollment in science and graduation, scientific literacy, publications, citations, technology and international collaboration (see Annex).

Following SI through OECD

SI had a huge impact on OECD. In December 1976, the OECD Committee for Scientific and Technological Policy (CSTP) organized a meeting of national experts on R&D statistics in order to prepare the work of the second Users Group on OECD work on R&D statistics. The OECD Secretariat submitted the question of indicators to the group: “Science indicators are a relatively new concept following in the wake of the long-established economic indicators and the more recent social indicators. So far, the main work on this topic has been done in the United States where the National Science Board has published two reports: Science Indicators 1972 (issued 1973) and Science Indicators 1974 (issued 1975)”.

The background document to the meeting analyzed in depth the indicators appearing in SI and compared them to the statistics available, and to those that could be collected and at which cost. The group was asked “to draw some lessons for future work in Member countries and possibly at OECD”.

67 Ibid, p. 17.
68 Science and Engineering Indicators.
69 Users groups were created in order to better align statistics to the needs of their users.
70 OECD (1976), op. cit, p. 3.
71 See particularly the annex of OECD (1976), op. cit.
72 It is important to remember that, at the time, OECD was collecting information on R&D only (monetary investments and personnel).
The final report of the Users Group (chaired by J. Mullin) suggested a three-stage program for the development of new indicators: 73

- Short-term: input indicators (like industrial R&D by product groups).
- Medium-term: manpower indicators (like occupations of scientists and engineers).
- Long-term: output (productivity, technological balance of payments, patents) and innovation indicators, as well as indicators on government support to industrial R&D.

A few months later, in November 1978, the OECD Directorate for Science, Technology and Industry (DSTI) responded to the users group report and made proposals to Member Countries. 74 It suggested to limit indicators to those most frequently requested by users of statistics, i.e. input indicators. The decision was dictated by the need to accelerate the diffusion of data - a limitation first identified by the users group: “(...) improvements in the rapidity with which all the International Statistical Year (ISY) results are issued cannot be hoped for if the present format of five volumes of data, each containing footnoted figures for the majority of OECD countries and accompanied by country notes, etc. is retained”. 75

It was thus proposed to publish data “arranged country by country with only the main indicators in an international format”. 76 This was the approach already used elsewhere in OECD (notably for national accounts and labor force data). To that end, it was suggested to create a database from which a report based on indicators would be published every two years. The report would replace the fifth volume of the ISY on R&D and “be modeled to some extent on the NSF Science Indicators reports”. 77

75 OECD (1976), Methods of Accelerating the Collection and Circulation of R&D Data, DSTI/SPR/76.52, p. 4.
76 OECD (1976), op. cit., p. 5-6.
The Canadian delegate, H. Stead, judged these proposals too timid. He suggested that the Frascati Manual be revised in order to bring it into an indicator manual. The first part would carry more or less the actual content of the manual, while the second would deal with other indicators, namely personnel, related scientific activities, outputs and high technology trade. His suggestions were rejected as premature, but the introduction of the Manual was rewritten for the 1981 edition in order to put R&D statistics in the larger context of indicators, and an annex on new indicators was added in the 1993 edition.

In the following years, the OECD extended its coverage of indicators beyond input indicators. The first issue of *Main Science and Technology Indicators* (1988) included data on R&D, patents, technological balance of payments, and high technology trade. Overall, the OECD, following the holding of several workshops, produced the following:

1. A series entitled *Science and Technology: Indicators Report*. The series was short-lived, however, because it was considered too time-consuming. Only three editions appeared: 1984, 1986 and 1989.
2. A database from which a series of data were, from 1988, published biannually - but without any analytical text:

78 OECD (1978), *ibid*, pp. 16-17.
79 OECD (1979), *Summary of the Meeting of NESTI*, SPT (79) 2, p. 4.
81 The question would be discussed again in 1988: “The delegates discussed whether one or more OECD manuals should be developed for measuring scientific and technological activities. They concluded that the revised Frascati manual should continue to deal essentially with R&D activities and that separate manuals in the Measurement of Scientific and Technical Activities series should be developed for S&T output and impact indicators which are derived from entirely different sources from R&D statistics”: OECD (1988), *Summary of the Meeting of NESTI*, SPT (88) 2.
3. A series of new methodological manuals on:
 a. Technological Balance of Payments (1990)
 b. Innovation (1992)
 c. Patents (1994)
 d. Human Resources (1995)

Despite the number of documents produced, the OECD never went as far as the NSF. Only a relatively small number of indicators appeared in its reports and data series. Despite important reflections and debates on output indicators for example, the only one present in OECD documents concerns patents. 83 Be it as it may, it was SI that convinced OECD to transform international survey data on R&D into science and technology indicators.

Although the NSF’s influence on OECD is evident here, the exchanges between the two organizations were not, however, one-way but bi-directional. I now turn to the way the OECD itself influenced SI.

Behind NSF’s Shoulders

It took only one year (from September 1971 to September 1972) for the NSB committee to complete a first draft of SI. In fact, the NSB had the chance to benefit from previous OECD experiences with indicators.

As early as 1965, Christopher Freeman and Alison Young compared R&D data and methodology in OECD countries. 84 They analyzed statistics on investments, manpower, technological balance of payments, patents, and migration for seven countries (Belgium,
France, Germany, the Netherlands, the United Kingdom, the United States and the USSR). This was the first document in industrialized countries to collect several indicators at once, years before SI did the same.

The report identified a gap between American and European efforts in R&D. Indeed, “gaps” was a buzzword of the time. There has been the missile gap, 85 the dollar gap, 86 and then the technological gap. 87 It was, in fact, a kind of political manifesto published in 1964 by P. Cognard of the French Délégation Générale de la Recherche, de la Science et de la Technologie (DGRST) that launched the debate on technological gaps. With very preliminary data on R&D, patents and international trade, the article claimed: 88

\[
\text{On ne voit pas très bien comment une Nation pourrait maintenir son indépendance politique si (elle) était subordonnée à des décisions techniques et économiques de firmes étrangères.}
\]

According to Freeman and Young, Europe was lagging behind the United States in terms of both investment and performance. The data on which the conclusion was based, however, were considered insufficient enough to provide a firm basis of comparison. Indeed, OECD Member countries only recently approved a standardized methodology for collecting R&D statistics. As a consequence, the second ministerial meeting for science and technology (1966) suggested that: “a committee of senior officials responsible for science policy (…) be set up, with instructions to carry out the preparatory work for future discussions. Their task included a study on national differences in scientific and technical potential – that is, on what has generally come to be described as technological gaps”. 89 Five studies were

85 Soon after the USSR launched Sputnik in 1957, the American scientific community used the satellite as a symbol to blame the Eisenhower’s administration for restrictive policies on basic research. See: A.J. Levine (1994), The Missile and Space Race, Westport: Praeger: 73-95.
conducted (four sector studies plus an analytical report). The material was submitted to the third ministerial meeting on science, held in 1968, under the title *Gaps in Technology*.

The report was the first policy-oriented analysis of data on science and technology. The study confirmed the gap in R&D efforts between America and Europe, but when military and civil R&D expenditures were separated, the picture changed sharply. The report even went to suggest that there were little correlations between a country’s R&D effort and its economic growth or trade performance: “the above analysis shows that the United States lead has not had any adverse effects on other countries’ growth and trade performance”.\(^9\)

Scientific and technological capability was a prerequisite but not a sufficient basis for success. Besides the size of the US market, important factors were identified as far more important: the role of government support, the educational system, and the management culture. For the OECD, the technological gap was in fact a management gap.

In order to arrive at this conclusion, *Gaps in Technology* looked at several indicators: R&D, innovation, trade, productivity, technological balance of payments and foreign investments. Some of these indicators were calculated for the first time and would become highly popular in the future (innovation). *Gaps* was the first systematic attempt to measure science and technology on several dimensions using indicators.\(^9\)

A similar exercise followed *Gaps* a few years later. It was, in fact, the third OECD contribution on indicators: *The Conditions for Success in Technological Innovation*, written by K. Pavitt and S. Wald.\(^9\) The document followed the third ministerial meeting on science (1968) that asked for a follow-up to *Gaps in Technology*. *Conditions for Success* retained six indicators to measure ten countries’ performance in technological innovation: 1) significant innovation, 2) receipts for patents, licenses and know-how, 3) origin of technology, 4) patents granted, 5) imports and 6) exports in research-intensive industries.

\(^{9}\) The OECD thought, for some time, to produce a gap exercise for third world countries, but never did. See: C (68) 91, p. 7. However, it documented gaps in fundamental research: J. Ben-David, *Fundamental Research and the Universities: Some Comments on International Differences*, OECD, Paris, 1968.

Gaps in Technology had a huge political impact, but the analysis was far more nuanced than it appeared in the media or in some intellectuals’ prose. 93 J.-J. Servan Schreiber, for example, made a bestseller of his book Le Défi américain, 94 Without being anti-American, Servan-Schreiber “sounded an alarm that America was well on the way to complete domination of the technological industries of Europe and, for the matter, of the world”. 95 As A. King reminded us, Servan Schreiber based his analysis on OECD data, but without acknowledging it. The United States has, he said, successfully integrated science with industry, whereas this giant step has escaped completely most of European firms. For Servan-Schreiber, Europe needed continental-wide firms similar to the Americans and less political institutions (than the European Economic Commission).

Nobody could have missed the ideological discourses on Gaps because they were largely diffused in the media. 96 As vice-president of the United States H.H. Humphrey noted: “If there is a technological gap, there is no gap in the information about it”. 97 Gaps had echoes in the United States as well and, for our purposes, in two organizations. First, the Department of Commerce (DoC) – as well as the NSF – began developing its own classification of technologically intensive industries in order to measure international trade. 98

The definition was based on multiple indicators, such as scientific and technical personnel, R&D expenditure as a percentage of sales and manpower competencies. This was the first tentative proposal to measure high technology trade in the United States. The second effect of Gaps was that the NSF produced SI, the first comprehensive repertory of science and technology indicators in the world.

93 J.-J. Salomon (1967), Le retard technologique de l’Europe, Esprit, November (pp. 755-775) and December (pp. 902-919). For R.R. Nelson, the technological gap was nothing new and has existed for upwards of one hundred years : R.R. Neslon (1967), The Technology Gap : Analysis and Appraisal, RAND Corporation, Santa Monica, California, P-3694-1.
95 A. King, Let the Cat Turn Around: One Man’s Traverse of the 20th Century, chapter 27 (Innovation Galore), to be published.
Conclusion

Science and technology indicators appeared in the mid-sixties, at a time when the term indicator became widely used, particularly in the measurement of social trends. They began to be developed at the OECD, particularly in the influential study *Gaps in Technology* (1968). The exercise was preceded, however, by one published in 1965, that of Freeman and Young, and was followed by one more, this time by Pavitt and Wald (1971). I know of only one more occurrence of the term “indicator” in the OECD literature on science and technology before the NSF. It appears in a chapter title of the results of the first *International Statistical Year* (ISY) on R&D, published in 1967. 99

While the OECD launched the idea of indicators, it is to the NSF that we owe the development of the field. Before the 1990s, the OECD never really went further than producing only some of the indicators first suggested by Freeman and Young – R&D, patents, technological balance of payments and trade in high-tech industries. 100 The two authors were, in fact, far in advance of everybody. They thought of more indicators than OECD would produce for some time. In contrast, the NSF constructed over one hundred indicators in the first editions of *SI*, 101 and the publication was imitated by several other organizations worldwide.

Two factors, one internal to the NSF, the other external, played a role in the decision of the NSF to get involved in indicators. Firstly, the 1950 law specifically mandated the NSF to evaluate and assess the state of science and technology in the country. This mandate was far from realized according to bureaucrats. It is probably safer to say that it was the increasing pressures put on the organization rather than the law itself that led the NSF to the decision

100 The selection of these four indicators was the result of the first workshop on output indicators (1978). See OECD (1979), *op. cit.*
101 OECD (1976), *op. cit.*, annex; Cozzens (1991), *op. cit.*
to do more than to simply collect and publish statistics. Secondly, the OECD study on Gaps offered the NSF a model of what could be done and what was to be expected in terms of results when an organization develops indicators.

Because of the quality of SI (and/or because of the volume of indicators), the OECD proclaimed that: “the main work on this topic has been done in the United States” (see pp. 10-11 above). 102 It is ironic how an organization can forget its own contribution to a field, unless someone else (the United States themselves) prepared the ground: 103

Interest in science and technology indicators seems to have grown considerable since an indicator publication was first developed in the United States in the early seventies.

It was rather the OECD that initiated work on indicators and produced the first analyses of science and technology based on them. But I do not want to make a too great argument with the OECD-dominated mentality vis-à-vis the United States. The OECD produced one model – a few indicators to answer policy questions –, the NSF another – a large number of data with no real assessment. 104 In fact, the NSF and the OECD were, from the start, in a relative symbiosis, each being a forerunner at a different stage in the history of measurement. A dialectics always existed between the two organizations and it is probably impossible, as usual in social studies, to definitely identify a unique cause to the emergence of indicators. But certainly, the two organizations were at the center of discussions and ideas.

102 This is not an isolated citation. For example, in another document, the OECD wrote: “Prior to this conference, the OECD has not played a very positive role in the development of science and technology indicators” (OECD (1980), op. cit., p. 39).
104 Indeed, in the same paper where he presented the NSF as the model, C. Falk (1984) admitted a wide spectrum of alternatives: “At one extreme is the presentation of solely numerical indicators. (…) One can go one step further and draw conclusions (…). Or one can go even further and draw the type of conclusions that involve subjective judgments (…). Finally, one can supplement this approach with recommendations for specific actions” (p. 39).
Annex

NSF Committee’s Choice of Science Indicators

<table>
<thead>
<tr>
<th>Indicators</th>
<th>Score</th>
<th>Feasibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Scientific Output Measure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Number of papers in top quality, refereed journals</td>
<td>50</td>
<td>N₁105</td>
</tr>
<tr>
<td>6. Utility of Knowledge</td>
<td>45</td>
<td>D106 N₁</td>
</tr>
<tr>
<td>30. Number of referenced articles; citations</td>
<td>38</td>
<td>N₁</td>
</tr>
<tr>
<td>32. Number of refereed publications originating from particular</td>
<td>35</td>
<td>N₂107</td>
</tr>
<tr>
<td>research grants or projects and estimated cost per paper</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34. Longitudinal number of patents/population 22-64 years</td>
<td>35</td>
<td>D</td>
</tr>
<tr>
<td>B. Activity Measures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Ratio of basic research funds to total investment in R & D</td>
<td>50</td>
<td>D</td>
</tr>
<tr>
<td>3. Federal support of total research by field of science</td>
<td>50</td>
<td>D</td>
</tr>
<tr>
<td>4. Ratio of number of scientific research project support proposals</td>
<td>50</td>
<td>D</td>
</tr>
<tr>
<td>warranting support to number of grants awarded by field of science</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(NSF and NIH only)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Ratio of applied research funds to total R & D</td>
<td>45</td>
<td>D</td>
</tr>
<tr>
<td>8. Ratio of development funds to total R & D</td>
<td>45</td>
<td>D</td>
</tr>
<tr>
<td>9. Ratio of Federal R & D funds to total Federal expenditures for such</td>
<td>45</td>
<td>D</td>
</tr>
<tr>
<td>functions as health, transportation, defence, etc.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Federal basic research dollars by field</td>
<td>45</td>
<td>D</td>
</tr>
<tr>
<td>11. Total funding of academic R & D (expenditures) and Federal</td>
<td>45</td>
<td>D</td>
</tr>
<tr>
<td>funding of academic science (obligations)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21. Basic research, applied research, development, and total R & D</td>
<td>40</td>
<td>D</td>
</tr>
<tr>
<td>dollars by source and performer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22. Split of Federal research support between academic young and senior</td>
<td>40</td>
<td>D</td>
</tr>
<tr>
<td>investigators</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23. Industrial R & D for R & D performing companies as a percent of sales</td>
<td>40</td>
<td>D</td>
</tr>
<tr>
<td>dollars</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24. R & D dollars in industry by type of industry</td>
<td>40</td>
<td>D</td>
</tr>
<tr>
<td>33. Federal academic science support by agency</td>
<td>35</td>
<td>D</td>
</tr>
<tr>
<td>35. Non-profit R & D, by source</td>
<td>35</td>
<td>D</td>
</tr>
<tr>
<td>43. Geographic distribution of R & D</td>
<td>30</td>
<td>D</td>
</tr>
<tr>
<td>44. Industrial R & D funding, by source</td>
<td>30</td>
<td>D</td>
</tr>
<tr>
<td>C. Science Education Measures</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

105 N₁ = New data to be developed – with comparative ease
106 D = Basic data in hand
107 N₂ = New data to be developed – with comparative difficulty
Indicators

<table>
<thead>
<tr>
<th>Indicators</th>
<th>Score</th>
<th>Feasibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>12. Percent of freshmen selecting science careers</td>
<td>45</td>
<td>D</td>
</tr>
<tr>
<td>13. Distribution of new baccalaureates, masters, and doctorates by field</td>
<td>45</td>
<td>D</td>
</tr>
<tr>
<td>14. Number of science and engineering degrees as a percent of total degrees</td>
<td>45</td>
<td>D</td>
</tr>
<tr>
<td>15. Stipend support of full-time graduate students by: field, type of support</td>
<td>45</td>
<td>D</td>
</tr>
<tr>
<td>31. Ratio of percentage of science and engineering freshmen enrolments and doctorates per geographic origin of students to percentage of total population of that region</td>
<td>38</td>
<td>D</td>
</tr>
<tr>
<td>36. Enrolments in science and math courses in public high schools</td>
<td>35</td>
<td>D</td>
</tr>
<tr>
<td>37. Postdoctoral training plans of doctorates by field</td>
<td>35</td>
<td>D</td>
</tr>
<tr>
<td>38. Ratio of science faculty to degrees and to graduate enrolments, by field of science</td>
<td>35</td>
<td>D</td>
</tr>
<tr>
<td>42. Distribution of Freshmen science and engineering probable majors by H.S. grades, class standing and test scores</td>
<td>31</td>
<td>D</td>
</tr>
</tbody>
</table>

D. Attitudes towards and interest in Science

<table>
<thead>
<tr>
<th>Indicators</th>
<th>Score</th>
<th>Feasibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>25. Prestige ratings of scientific occupations vs. ratings of other fields of endeavor according to public opinion polls</td>
<td>40</td>
<td>N₁</td>
</tr>
<tr>
<td>26. Poll of views about science on part of students</td>
<td>40</td>
<td>N₁</td>
</tr>
<tr>
<td>39. Poll of views about science on part of public at large</td>
<td>35</td>
<td>N₁</td>
</tr>
</tbody>
</table>

E. Manpower Measures

<table>
<thead>
<tr>
<th>Indicators</th>
<th>Score</th>
<th>Feasibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>16. Relative and absolute employment of scientists and engineers by sector, degree, and field of science</td>
<td>45</td>
<td>D</td>
</tr>
<tr>
<td>27. Percentage of scientists and engineers unemployed by degree and field of science compared with equivalent ratios for other areas of professional employment</td>
<td>40</td>
<td>N₁</td>
</tr>
</tbody>
</table>

F. Extent of New Thrusts

<table>
<thead>
<tr>
<th>Indicators</th>
<th>Score</th>
<th>Feasibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Major new frontiers of science opened up during a specific year</td>
<td>50</td>
<td>N₂</td>
</tr>
<tr>
<td>17. Major «frontier» facilities in various areas of science which are feasible and are not being constructed. Comparison with a similar list developed for the rest of the world</td>
<td>45</td>
<td>N₂</td>
</tr>
</tbody>
</table>

G. International
Indicators

<table>
<thead>
<tr>
<th>Indicators</th>
<th>Score</th>
<th>Feasibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Ratio of U.S. scientific publications to world total</td>
<td>45</td>
<td>N₂</td>
</tr>
<tr>
<td>19. Relationship of U.S. R & D/GNP capita among various nations</td>
<td>45</td>
<td>D</td>
</tr>
<tr>
<td>20. R & D scientists and engineers per 10,000 population in different countries</td>
<td>45</td>
<td>D</td>
</tr>
<tr>
<td>28. R & D/GNP in different countries</td>
<td>40</td>
<td>D</td>
</tr>
<tr>
<td>29. Scientific and engineering personnel per 10,000 population in different countries</td>
<td>40</td>
<td>D</td>
</tr>
<tr>
<td>40. Nobel (and other) prizes per capita won by U.S. each year compared with other countries</td>
<td>35</td>
<td>N₂</td>
</tr>
</tbody>
</table>
Annex (continue)

Science Indicators Considered But Not Recommended

Federal intramural R & D funding, by agency.
Percent of science drop-outs during college career.
Number of people taking science courses where there are no such requirements.
Nationality of invited speakers at large international meetings.
R & D expenditures/capita for different countries.
Total numbers of papers produced by U.S. scientists per year.
Geographic distribution of academic science dollars for various grouping of institutions (Magnitude of Federal academic science dollars, number of science and engineering baccalaureates, number of science Ph.D.s, etc.).
Increase in number of scientific category jobs in the Department of Labor’s Dictionary of Occupational Titles.
Relationship of U.S. scientific papers to world papers as compared with U.S. GNP against world’s GNP.
Technicians/scientist and engineer in different countries.
Longitudinal studies of the publication history of a sample of Ph.D.s in a variety of fields from a variety of institutions.
Number of people who choose to visit science exhibitions or natural science museums.
Ratio of number of Federally supported articles to Federal research funds allocated, by field.
Types of instrumentation and techniques cited in the papers.
Degrees and graduate enrolments by average GRE score of Masters and Ph.D.s.
Projections of supply and utilization of all scientists and engineers as well as doctorates by field and activity.
Projections by degree and field of science.
Balance of payments over time.
Growth in cubic footage in university, government, and private research laboratories.
Percent of university budgets allocated to scientific departments vs. other departments.
Annual average percentage of front-page stories in the New York Times that deal with scientific subjects.
Salaries commanded by those in «scientific» job categories vs. those in non-science categories.
Membership in professional societies as percent of total working population.
Percent of those listed in Who’s Who who have scientific backgrounds.
Attendance at scientific symposia, etc.
Subscriptions (per capita) to science magazines and science book purchases.
List of such facilities in various areas of science which are feasible and are not being constructed. Comparison with a similar list developed for the rest of the world.
Percentage of utilization by facility as compared to maximum possible utilization in terms of shifts of operation, number of experiments being performed, etc.